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• For better decision making and a pleasant user
experience, agents need to be more sociable.

• It is important for agents to not only recognise
emotions but also to be able to express
emotions in a way which is apprehensible for
humans.

• The motivation behind this study is to explore
the possibility of training agents to express
emotions.

• People express and perceive emotions
differently and thus, the agents need to adapt
to this variance.

• The iCub captures an image of the user’s expression which is fed to a pre-trained CNN giving it a 
feature vector representation. 

• Feature representations are fed to the SOM where clusters emerge pertaining to each emotion. 

• User interactions are modelled by taking the Best Matching Unit (BMU) from SOM for training an 
MLP to predict the action which best mimics the user’s expression. 

• The user rewards the robot’s action and the MLP is trained to select the correct expression by 
learning to predict this reward. 

• The CNN is pre-trained using the Cohn-
Kanade+ dataset. 

• For each experiment, the SOM is trained and 
customised to the user’s face and 
expressions. 

• Each interaction between the agent and the 
user can be split into four steps: 

The iCub expression representations used in the 
study can be seen in the figure below: • Agent associates an expression representation 

with the respective emotion thus ‘learning’ 
how to express emotions. 

• The method still requires more than 100 
interactions per user to learn meaningful 
expressions. 

• This number is expected to decrease with 
improvements in training methodologies and 
by collecting more data for training. 
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(a) Users with no prior knowledge (b) Users with prior knowledge

• Clusters emerge in the SOM corresponding to 
particular emotions.

• Each epoch corresponds to 100 interactions for 
calculating the average cost.

• Experiments conducted with users with and 
without prior knowledge of the system. 
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