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Actor-Critic Models for
Reinforcement Learning

[Sutton & Barto, 1998]

Motivation
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SIRE Model
[Lim et al. 2014]

Emotion Circuitry 
[Barros, 2016]



NICO: Neuro-Inspired Companion
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NICO displaying facial expression
for seven basic emotions: neutral,
happiness, sadness, anger,
surprise, fear and disgust.

[Churamani et. al 2017]
[Kerzel et al. 2017]
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NICO: Neuro-Inspired Companion
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*Each Wavelet: [yStretch, yOffset, xStretch, xOffset]
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Proposed Model
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Face Configuration



Emotion Perception
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Output 5

Emotion Perception
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Multi-Channel Convolutional Neural Network Perception 
GWR Network
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Intrinsic Emotions
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GWR
ClassifierClassify

All Neurons

2 BMUs
(weights of winners)

RL
Agent

Enforcing Positive / Negative 
Valence from Perception

All 
Neurons

Current State : 
Mood Affect 

Vector*

Memory Affect 
Vector* Modulation

Perception GWR

Affective Memory GWR

Mood GWR

[0.03, 0.5, 0.2, 0.2, 0.07]

[0.04, 0.4, 0.25, 0.25, 0.06]

Intrinsic Emotions
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* Affect Vector encodes the
fraction of neurons corresponding
to each emotion constituting the
GWR.
Eg. Angry Heavy Memory:

[ 0.5,  0.1,   0.2,   0.15, 0.05]   
[Ang, Hap, Neu, Sad,  Sur]
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Learning To Express
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Learning To Express

(Reinforcement Learning in Continuous Domain)
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§ Deep Deterministic Policy 
Gradients

§ Extension of DQN [Mnih et al. 2015] to 
continuous actions [Lillicrap et al. 2015] :
§ Separate networks trained 

using  gradient transfer
§ Tracked updates – enhance 

stability at the cost of learning 
speed

§ Replay memory – decouples 
learning episodes

Learning Empathy-Driven Emotion Expressions using Affective Modulations



Learning To Express
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Left Eye: [1.0, -0.007, 1.0, 0.02]
Right Eye: [1.0, -0.0007, 0.99, -0.01]
Mouth: [-0.99, 0.009, -1.0, 0.015, -0.99, 0.025, 1.00, 0.006]

*Each Wavelet: [yStretch, yOffset, xStretch, xOffset]

Upper Lip Lower Lip



Results
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Rewarding Symmetry
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Result: NICO Faces
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Learning with Users: Setup
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§ Training with 6 participants.

§ Each participant trains the robot 
by telling a story after reading and 
memorising from the screen.
• The story is split into 21 

interaction dialogues.
• Each dialogue presents 5-6 

seconds of audio-visual input 
after which the robot reacts.

§ For testing purposes another story 
is narrated to the robot consisting 
of 10 interaction dialogues.



Learning with Users: Scenario
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I am still hopeful that they get
some of the senior players
back in the team.

NICO generates a
Face Expression
it deems appropriate.

Robot forms an 
intrinsic affective 
model of the 
interaction.

User Narrates a
story to the robot
with an affective
context.

User Evaluates the 
Generated face for 
appropriateness. Based 
on the user evaluation, 
robot is rewarded.

Participant 
Evaluation:

Inappropriate



Learning with Users: Results
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Robot mood evolving over 10 interactions (each lasting for 5-6 seconds) for each participant. 
Area under the curves with different colors represent the fraction of neurons in the resultant 

mood of the robot for each corresponding emotion. 
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Participant and Mean Annotator Evaluations (𝜅 = 0.51) on the
appropriateness of the generated expression on NICO.



§ A Deep Hybrid Neural Network is presented for emotional appraisal and 
expression generation.

§ Empathy an important factor to learn robot behaviour.
§ Emotion Classification is only half of the story.
§ Intrinsic Emotional representations in the robot allow for better affective 

interactions with users.
§ Spontaneous emotions along with affective contextual memory is 

important to model dynamic and fluid human-robot interaction. 

§ Future Work: 
§ Learned actions can be enhanced to cover a richer continuous space 

dealing even with multiple modalities. 
§ Using linguistic information to improve contextual understanding.

Conclusion
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