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(1) http://abovewhispers.com/2016/06/14/robot-receptionists-introduced-at-hospitals-in-belgium/
(2) https://interestingengineering.com/softbank-is-opening-a-cafe-where-pepper-robots-will-work-alongside-humans
(3) https://www.thetimes.co.uk/article/robot-carers-for-the-elderly-are-now-a-reality-in-japan-but-do-we-want-them-here-mw8zpw0zd
(4) https://customerthink.com/4-ways-social-robots-improve-customer-experience-in-retail-stores/
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(a) Boumans R, van Meulen F, Hindriks K, et al Robot for health data acquisition among older adults: a pilot randomised controlled cross-over trial
BMJ Quality & Safety 2019;28:793-799.
(b) https://www.scmp.com/lifestyle/health-wellness/article/3024028/how-robot-nurses-could-help-care-worlds-elderly-and 
(c) https://eindhovennews.com/news/2018/06/robot-pepper-helps-children-hospital-visits/
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• Models trained in isolation on benchmark datasets.

• Large datasets enable generalisation across contexts.

• Training data might be very different from application 
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differences.

• Cumbersome to retrain and update models.
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• Robot perception is pre-trained and 
does not adapt.

• Pre-training on ‘large-enough’ datasets 
to ensure generalisation.

• Individual differences in expression are 
ignored.
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• Robot uses pre-trained perception and 
adapts it with each interaction.

• Interactions help to gather more data.
• User-specific attributes provide context.

• Agent continually updates its 
perception.

• With each interaction.
• Personalising towards each user.

Traditional ML    

• Robot perception is pre-trained and 
does not adapt.

• Pre-training on ‘large-enough’ datasets 
to ensure generalisation.

• Individual differences in expression are 
ignored.

Continual Learning
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• Robot interacts in restricted settings.
• RL models perfect task behaviours.

• Context and task-switching is intractable.
• Large amount of interactions needed to learn.

• Interactive RL with human in the loop helps 
speed up convergence.
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• Robot tries to interact with the user.
• User feedback provides data for learning.

• User-specific attributes provide affordances.
• Task-specific attributes provide context.

• Agent continually improves its behaviour at 
the task.

• Improving its behaviour with each 
interaction.

• Extending this learning to different users.

• Robot interacts in restricted settings.
• RL models perfect task behaviours.

• Context and task-switching is intractable.
• Large amount of interactions needed to learn.

• Interactive RL with human in the loop helps 
speed up convergence.

Traditional ML    Continual Learning
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Gathering Person-specific Data 

• Interactions are the 
only source of data.

• Initial interactions 
impacted due to slow 
learning.

• User specific data 
unavailable before any 
interaction.

Why?

• Conduct introductory 
interaction rounds 
enable collecting 
additional data.

• Use a generative model 
to simulate additional 
person-specific data for 
augmenting learning.

How?
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• Human affect is 
subjective.

• Ground truth changes
with users and contexts.

• Unsupervised learning 
may be intractable in 
real-time.

Why?

Learn Normative Baselines
• Contextually neutral 

interactions provide a 
baseline for measuring 
human behaviour.

Learn Semantic Associations
• Group users based on 

person-specific 
attributes to speed up
learning.

How?
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• Human interactions are 
fluid and toggle
between contexts.

• Robots need robust and 
quick context-switching.

• Contextual attributions 
required for learning 
may overlap.

Why?

Learn Contextual 
Attributions 
• Context-aware 

embeddings enable 
distinguishing between 
task boundaries.

• Context attributes (e.g. 
environment or 
objective)  facilitate 
context-switching.

How?
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• Hardware capabilities 
on robots are limited
for online learning.

• Memory-Computation 
trade-off needs to be 
considered.

• Online-adaptation 
becomes challenging.

Why?

Allow Controlled Forgetting 
• Biologically-inspired 

forgetting makes way for 
new knowledge.

Balance Memory with 
Computation 
• Generative models for 

pseudo-rehearsal.
• Robotics as Service (RaaS).

How?
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• Evaluations provide
guarantees for Fairness
and Reproducibility.

• Continual Learning 
metrics evaluate 
robustness towards 
dynamic shifts in data 
distributions.

Why?

• CL metrics (e.g. Forward
and Backward Transfer
or Catastrophic 
Forgetting rate) measure 
robustness.

• Traditional Metrics (e.g. F1 
or AUC-ROC scores)
measure task performance.

How?
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• Real-world interactions are complex and unpredictable.
• Affective Robots need to adapt on-the-fly.

• Desiderata from Affective Robots; personalisation and
behaviour adaptation.

• Continual Learning enables perpetual evolution of robot 
capabilities.

https://www.nbcnews.com/tech/tech-news/we-re-entering-age-friendly-robots-n703336
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