

CLIFER: Continual Learning with Imagination for Facial Expression Recognition

Nikhil Churamani

Hatice Gunes

Motivation

Generalisation for Facial Expression Recognition (FER) in-the-wild

trade-off

Personalisation to Learn Individual Expressions

(b)

S. R. Livingstone et al., "The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English," PLOS ONE, vol. 13, 2018

Motivation

Traditional Approaches

- Models trained on benchmark datasets enable generalisation across contexts and environments.
- Yet, generalisation comes at the cost of personalised learning.
- Costly to retrain and update models on-the-fly.

Personalisation towards Individual Expression

- Models that continually learn and adapt with each user.
- Adaptation with new data acquired during real-world interactions with users without forgetting the learnt knowledge.
- **Continual Learning** of Individual Facial Expressions to embed **personalisation** in models.

Complementary Learning Systems in the Human Brain

- Hippocampal and neocortical regions of the brain form a complementary learning system.
- Hippocampus forms an episodic memory for learning novel information.
- Neocortex forms a semantic memory by slowly replaying information from the hippocampus enabling long-term retention.

Growing Dual Memory (GDM)

Episodic Memory learns *non-overlapping* representations of **novel** experiences.

- Distance-based similarity for unsupervised Hebbian learning.
- New neurons added rapidly to learn feature prototypes.

Semantic Memory learns compact *overlapping* representations that **generalise** across a particular class.

- Best Matching Neurons (BMUs) from episodic memory replayed to the semantic memory.
- Slow updation enables overlapping representations.
- Histogram frequency-based associative labelling for classification.

Pseudo-rehearsal to guard against forgetting by **replaying** trajectories of neural activations from the episodic memory.

Associative Labelling

Growing-When-Required (GWR) Neural Network

Continual Learning for Facial Expression Recognition

Challenges and Solutions

- Lack of subject-specific data acts as bottleneck for enabling personalisation.
- Imagination as a substitute to sensory input.
- Simulated data enables individual and contextdependent adaptation.
- Adversarial Learning to imagine additional data to augment learning.

Imagination Model

Conditional Adversarial Auto-Encoder (CAAE)

Imagination Model

Generated Images

Continual Learning with Imagination for FER

Evaluation

Datasets:

- Evaluating model performance on **three datasets** for *six classes*:
 - Anger, Sadness, Happiness, Surprise and Fearful and Neutral.
- RAVDESS (24 Subjects)

MMI (10 Subjects)

• **BAUM-1 Spontaneous** (9 Subjects)

Comparisons:

- Encoder with MLP-Baseline:
 - Traditional Batch-Learning.
 - Model Retrained with each new class.
 - Baseline for traditional ML.
- Encoder with GDM:
 - Growing Dual Memory model without pseudo-rehearsal.
 - Baseline for CL.
- Encoder with GDM + Replay:
 - Growing Dual Memory model with pseudo-rehearsal.
 - Explicit replay of neural trajectories following seen classes.
- Encoder with CLIFER (GDM + Imagination):
 - Growing Dual Memory model with imagination.
 - Implicit replay of seen and unseen (imagined) classes.

Experiment 1: Remembering Seen Expressions

Class Incremental learning training the models one class at a time for each subject.

After each new class, models evaluated on *previously seen* classes.

Mean F1-Score with 95% confidence interval reported across all subjects.

Experiment 2: Adapting to New and Unseen Expressions

After each new class, models evaluated on *all seen* and *unseen* classes.

Mean F1-Score with 95% confidence interval reported across all subjects.

Class Ordering Impacts Model Performance

- Model performance sensitive to order of learning classes.
- CLIFER performance compared for 6 learning orders starting with each class once and randomly selecting the others.
- Kruskal-Wallis H-tests report **significant** (p < 0.05) difference in F1-scores at the beginning and end of learning for Experiment 2.
- Starting with *neutral* results in best model performance across all 3 datasets. Order of learning set to start with *Neutral*, followed by (randomly selected) *Happiness*, *Surprise*, *Anger*, *Fearful* and *Sadness*.
- Neutral seems to represent a normative baseline that allows distinct feature prototypes for subsequent classes.

F1-Score		
Dataset	Episodic	Semantic
RAVDESS	0.98 ± 0.01	0.75 ± 0.01
MMI	0.75 ± 0.07	0.46 ± 0.04
BAUM-1	0.87 ± 0.05	0.51 ± 0.04

CLIFER Performance

Conclusions

- We present a **novel framework** applying *Continual Learning with Imagination for Facial Expression Recognition*.
- Complementary Learning based solution **integrates new information** without interfering **with past knowledge**.
- Imagination as a critical tool for simulating person-specific data in real-world applications.
- Order of learning different expression classes impacts model performance where starting neutral improves future learning.

CLIFER: Continual Learning with Imagination for Facial Expression Recognition

Nikhil Churamani

Hatice Gunes

