



# CLIFER: Continual Learning with Imagination for Facial Expression Recognition



**Nikhil Churamani** 



**Hatice Gunes** 



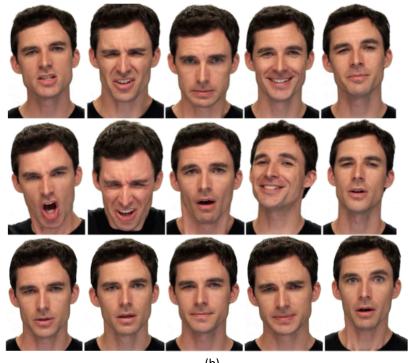
### **Motivation**

**Generalisation** for Facial Expression Recognition (FER) in-the-wild



trade-off

**Personalisation** to Learn Individual Expressions



(b)



S. R. Livingstone et al., "The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English," PLOS ONE, vol. 13, 2018

#### **Motivation**

#### **Traditional Approaches**

- Models trained on benchmark datasets enable generalisation across contexts and environments.
- Yet, generalisation comes at the cost of personalised learning.
- Costly to retrain and update models on-the-fly.



#### **Personalisation towards Individual Expression**

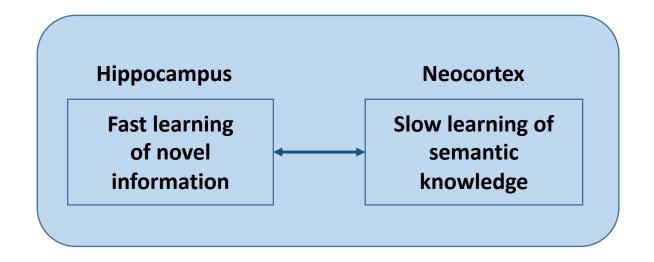
- Models that continually learn and adapt with each user.
- Adaptation with new data acquired during real-world interactions with users without forgetting the learnt knowledge.
- **Continual Learning** of Individual Facial Expressions to embed **personalisation** in models.





## **Complementary Learning Systems in the Human Brain**

- Hippocampal and neocortical regions of the brain form a complementary learning system.
- Hippocampus forms an episodic memory for learning novel information.
- Neocortex forms a semantic memory by slowly replaying information from the hippocampus enabling long-term retention.



## **Growing Dual Memory (GDM)**

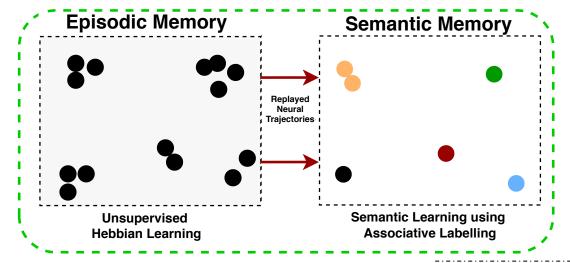
**Episodic Memory** learns *non-overlapping* representations of **novel** experiences.

- Distance-based similarity for unsupervised Hebbian learning.
- New neurons added rapidly to learn feature prototypes.

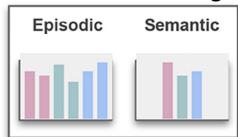
**Semantic Memory** learns compact *overlapping* representations that **generalise** across a particular class.

- Best Matching Neurons (BMUs) from episodic memory replayed to the semantic memory.
- Slow updation enables overlapping representations.
- Histogram frequency-based associative labelling for classification.

**Pseudo-rehearsal** to guard against forgetting by **replaying** trajectories of neural activations from the episodic memory.



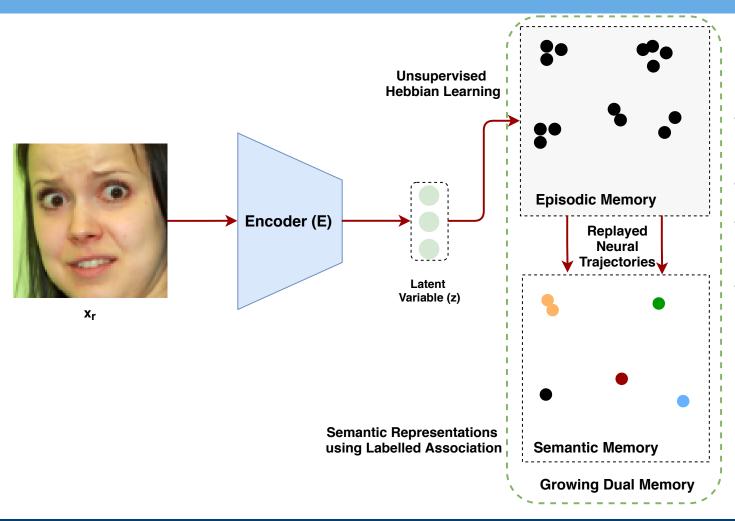
#### **Associative Labelling**



Growing-When-Required (GWR) Neural Network



# **Continual Learning for Facial Expression Recognition**



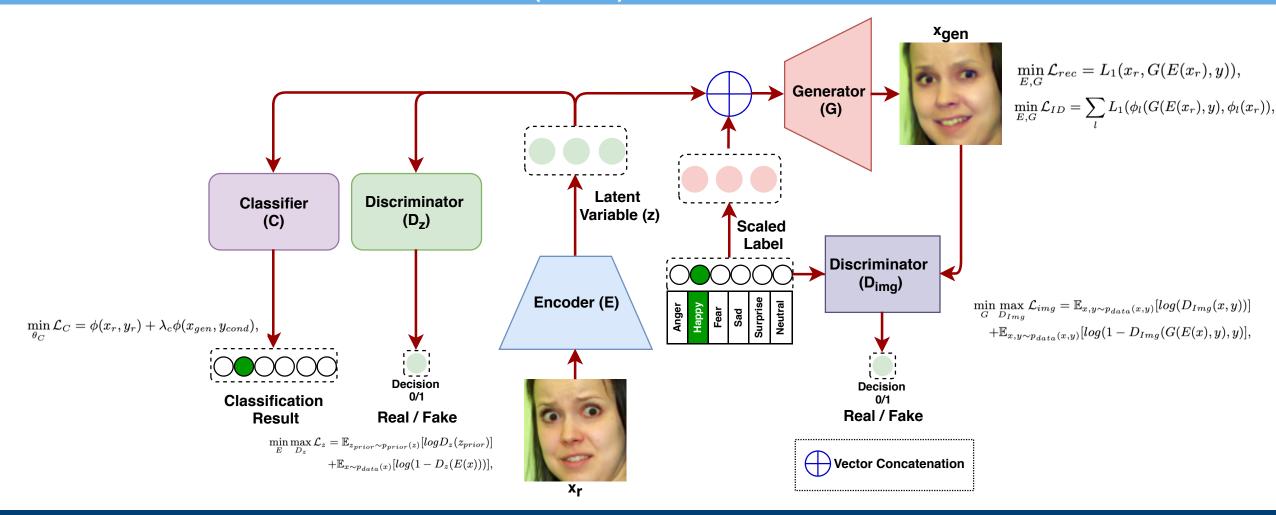
#### **Challenges and Solutions**

- Lack of subject-specific data acts as bottleneck for enabling personalisation.
- Imagination as a substitute to sensory input.
- Simulated data enables individual and contextdependent adaptation.
- Adversarial Learning to imagine additional data to augment learning.



# **Imagination Model**

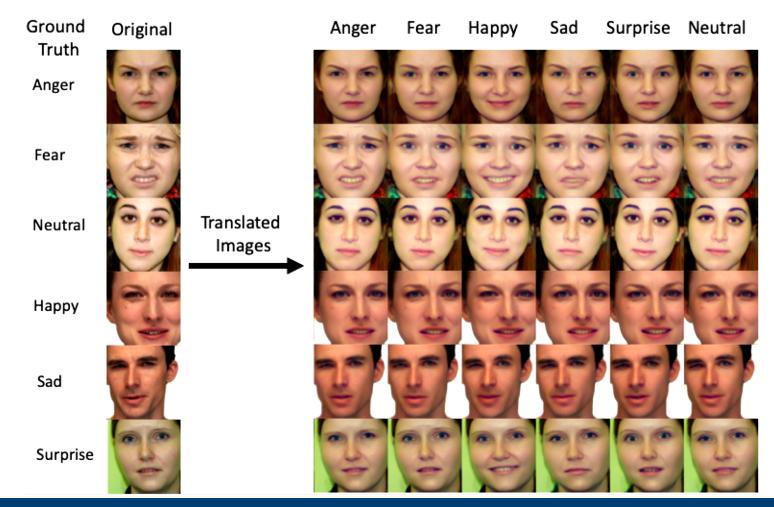
#### **Conditional Adversarial Auto-Encoder (CAAE)**





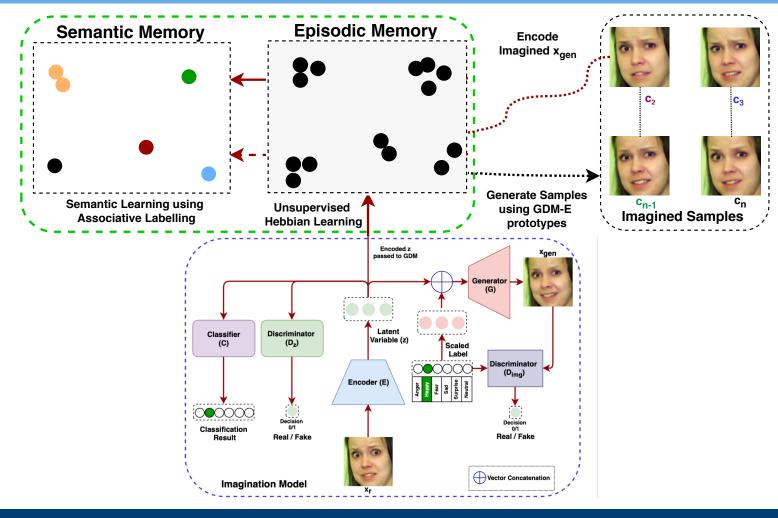
# **Imagination Model**

### Generated Images





## **Continual Learning with Imagination for FER**



## **Evaluation**

#### **Datasets:**

- Evaluating model performance on **three datasets** for *six classes*:
  - Anger, Sadness, Happiness, Surprise and Fearful and Neutral.
- RAVDESS (24 Subjects)









MMI (10 Subjects)



• **BAUM-1 Spontaneous** (9 Subjects)











#### **Comparisons:**

- Encoder with MLP-Baseline:
  - Traditional Batch-Learning.
  - Model Retrained with each new class.
  - Baseline for traditional ML.
- Encoder with GDM:
  - Growing Dual Memory model without pseudo-rehearsal.
  - Baseline for CL.
- Encoder with GDM + Replay:
  - Growing Dual Memory model with pseudo-rehearsal.
  - Explicit replay of neural trajectories following seen classes.
- Encoder with CLIFER (GDM + Imagination):
  - Growing Dual Memory model with imagination.
  - Implicit replay of seen and unseen (imagined) classes.

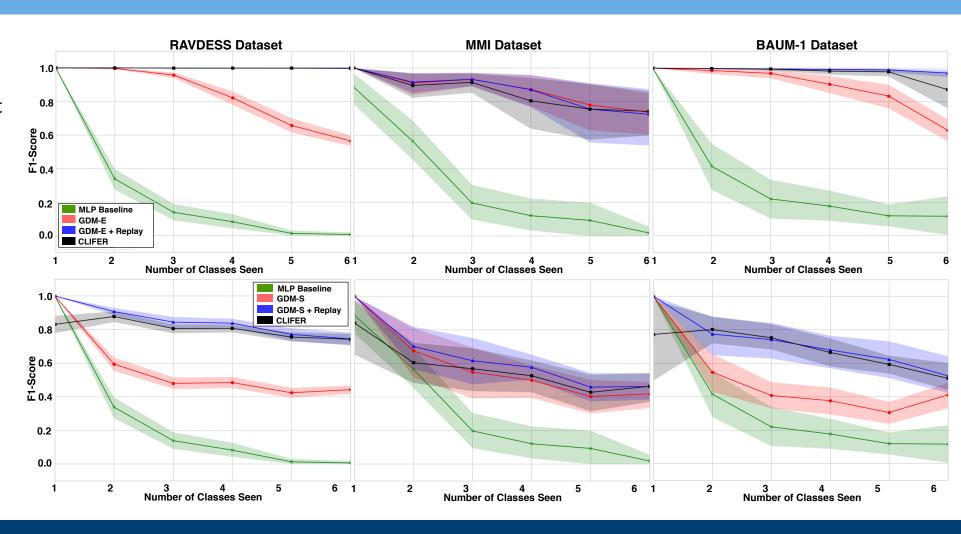


# **Experiment 1: Remembering Seen Expressions**

Class Incremental learning training the models one class at a time for each subject.

After each new class, models evaluated on *previously seen* classes.

Mean F1-Score with 95% confidence interval reported across all subjects.

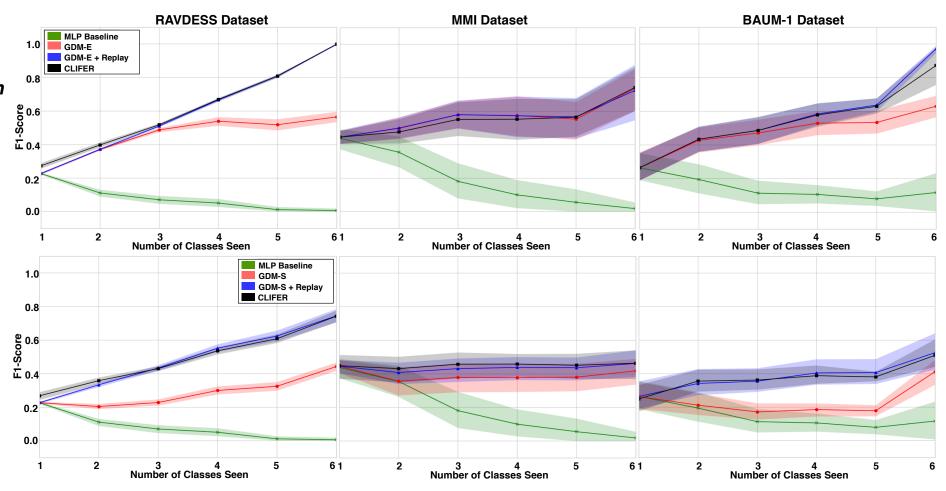




# **Experiment 2: Adapting to New and Unseen Expressions**

After each new class, models evaluated on *all seen* and *unseen* classes.

Mean F1-Score with 95% confidence interval reported across all subjects.





## Class Ordering Impacts Model Performance

- Model performance sensitive to order of learning classes.
- CLIFER performance compared for 6 learning orders starting with each class once and randomly selecting the others.
- Kruskal-Wallis H-tests report **significant** (p < 0.05) difference in F1-scores at the beginning and end of learning for Experiment 2.
- Starting with *neutral* results in best model performance across all 3 datasets. Order of learning set to start with *Neutral*, followed by (randomly selected) *Happiness*, *Surprise*, *Anger*, *Fearful* and *Sadness*.
- Neutral seems to represent a normative baseline that allows distinct feature prototypes for subsequent classes.

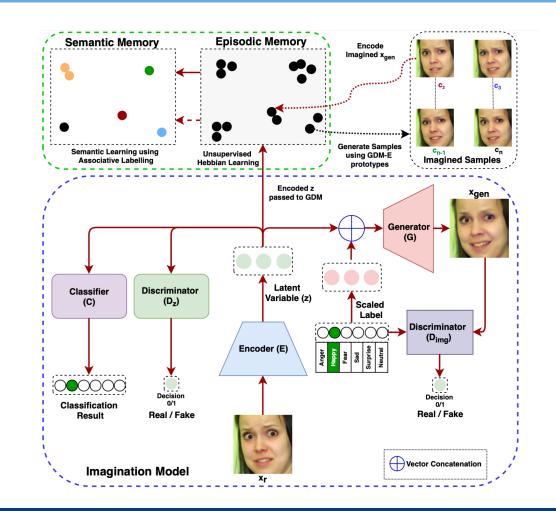
| F1-Score |                 |                 |
|----------|-----------------|-----------------|
| Dataset  | Episodic        | Semantic        |
| RAVDESS  | $0.98 \pm 0.01$ | $0.75 \pm 0.01$ |
| MMI      | $0.75 \pm 0.07$ | $0.46 \pm 0.04$ |
| BAUM-1   | $0.87 \pm 0.05$ | $0.51 \pm 0.04$ |

**CLIFER Performance** 

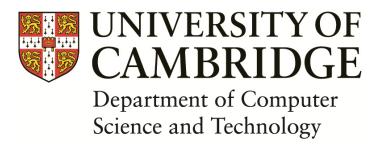


### **Conclusions**

- We present a **novel framework** applying *Continual Learning with Imagination for Facial Expression Recognition*.
- Complementary Learning based solution **integrates new information** without interfering **with past knowledge**.
- Imagination as a critical tool for simulating person-specific data in real-world applications.
- Order of learning different expression classes impacts model performance where starting neutral improves future learning.









# CLIFER: Continual Learning with Imagination for Facial Expression Recognition



**Nikhil Churamani** 



**Hatice Gunes** 

