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Affective Robots in Wellbeing Settings
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Need for Personalised Interactions
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Towards Continual Personalisation

Traditional Approaches Personalisation towards Individual Expression
« Perception models trained on benchmark datasets enable® Robots that continually learn and adapt with each user.
generalisation across contexts and environments. . Adaptation with new data acquired during real-world
* Yet, generalisation comes at the cost of personalised interactions.
learning. * Continual Learning of Individual Facial Expressions to
* Costly to retrain and update models on-the-fly. embed continual personalisation in robots.
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(a) S. Li et al., “Deep facial expression recognition: A survey,” CoRR, vol. abs/1804.08348, 2018.
(b) https://marketingland.com/wp-content/ml-loads/2016/03/emotions_ss_1920.png




Continual Learning for Personalised Affect Perception

Participant Image encoded into a latent variable (z).
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Pepper as a Robotic Coach for Wellbeing

* Pepper offering Positive Psychology (PP)-based wellbeing
coaching.

* Interaction Script Developed with a Professional Psychologist.

e PP-based exercises or tasks:

* Talk about two impactful things or events from the past two
weeks.

* Focus on gratitude and talk about two things to be grateful
about.

* Focus on two recent accomplishments and the strengths applied
for those.

* Participant verbal responses (yes/no responses) and facial
expressions observed to model personalised interactions.

* Adaptation achieved by modifying the interaction flow based
on participant behaviour.
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The Proposed Framework
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Experiment Set-up

20 Participants (12 female, 5 male, 3 not disclosed).
* Average Age: 26.70 + 3.68 years from 12 different nationalities.

* Screened using GAD7 and PHQS questionnaires to ensure non-
clinical population.

Between-subjects study design with random assignment to
one of three experiment Conditions (Coach Variants):

* C1 - Static and Scripted: Robot following the pre-defined script
with no consideration towards participants affective responses.

* (C2 - Affect-based Adaptation without Personalisation: Off-the
shelf, state-of-the-art facial affect perception model used to
determine participants’ affective responses. Robot responses
adapted based on participants’ perceived affective state.

* (3 - Affect-based Adaptation with Continual Personalisation:
CLIFER-based personalised affect perception used to determine
participants’ affective state. Robot responses adapted based on
the robot’s perception.
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For C2: P. Barros, N. Churamani, and A. Sciutti. The FaceChannel: A Fast and Furious Deep Neural Network for Facial
Expression Recognition. SN Computer Science, 1(6), 2020.

For C3: N. Churamani and H.Gunes. CLIFER: Continual Learning with Imagination for Facial Expression Recognition. In 2020
15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020) (pp. 322-328). IEEE.




Evaluation

e Evaluating participants’ impressions of Pepper as the Robotic Coach under the different conditions based on:

* GODSPEED: Measuring anthropomorphism, animacy, likeability, perceived intelligence and perceived safety.

* RoSAS: Measuring warmth, competence and (dis) comfort.

* Customised Questions: Measuring whether participants felt the robot understood what they said, how they felt and
adapted its behaviour accordingly.

* Mann-Whitney U Test to compare individual conditions.

UNIVERSITY OF

H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically larger than the other. The
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Evaluation: GODSPEED
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C. Bartneck, D. Kulic', E. Croft, and S. Zoghbi. Measurement in- struments for the anthropomorphism, animacy, likeability,
perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, vol. 1, no. 1, pp. 71-81, 2009.




Evaluation: RoSAS
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Evaluation: Customised Questions

* represents p < 0.05 and ** represents p < 0.01.
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Key Outcomes

Conclusions Next Steps

e First study investigating continual learning to improve ¢ Multi-modal analysis of user behaviour to improve

robot’s perception of participant affective behaviour. robot perception their affective state.

* Proof-of-concept evaluations highlight that affective * Use of Natural Language Understanding (NLU) for
adaptation is preferred over static, non-adaptive active listening.
interactions.

* Extending the experiments to longitudinal settings
* Continual Personalisation improves participant’s with repeated interactions.
impressions for anthropomorphism, animacy,
likeability, warmth and comfort.

* Extending the experiments with more participants
across demographic distributions with respect to
* Sensitivity to individual differences in affective gender and ethnicity.
behaviour allows empathetic interactions, particularly
beneficial for wellbeing scenarios.
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