

Department of Computer Science and Technology



# **Towards Fair Affective Robotics: Continual Learning for Mitigating Bias in Facial Expression and Action Unit Recognition**



Ozgur Kara



Nikhil Churamani

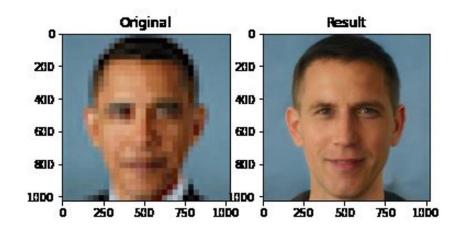


**Hatice Gunes** 

# **Affective Robotics & Facial Analysis**

- Affective robotics become integral in human life
- Successful long-term HRI can be used in:
  - Providing **physical** and **emotional support** to the users
  - Healthcare, education and entertainment
  - Child-robot interactions
- **Fair** analysis of facial expressions is of vital importance in affective robotics (e.g. design of emotion-aware robots)






(a)



- (a) Boumans R, van Meulen F, Hindriks K, et al Robot for health data acquisition among older adults: a pilot randomised controlled cross-over trial BMJ Quality & Safety 2019;28:793-799.
- (b) https://www.wired.com/2010/09/darpa-robot-smarts/

### **Towards Fairness**



Darker Gender Darker Lighter Lighter Largest Classifier Female Male Male Female Gap Microsoft 94.0% 79.2% 100% 98.3% 20.8% FACE++ 99.3% 65.5% 99.2% 94.0% 33.8% IBM 88.0% 65.3% 99.7% 92.9% 34.4%

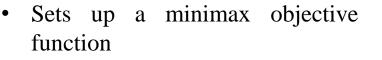
(a) A high resolution image is generated from **Barack Obama's** low-resolution image using a generative model

(b) **Gender classification** performances of 3 different classifiers



(a) https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias
(b) J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. volume 81 of Proceedings of Machine Learning Research, pages 77–91, New York, NY, USA, 23–24 Feb 2018. PMLR

# **Popular Bias Mitigation Approaches**


٠

Multi-Task Learning Adds the biased attribute to the learning objective

Data Augmentation

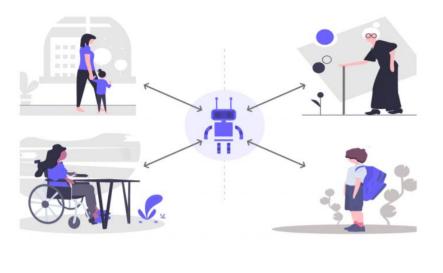
• Generates additional samples for underrepresented groups.

Adverserial Learning








# **Continual Learning**

#### **Continual Learning:**

- Can learn with incrementally acquired data
- Has the ability **to adapt** with the new data **without forgetting** the seen information

#### Why Continual Learning:

- Step by step learning manner can allow for **robustness** against biased attributes
- CL can **balance** learning across different domains which leads to development of **fairer models** for affective robots



(a)



(a) Churamani et al.. Continual Learning for Affective Robotics: Why, What and How?. In IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 425--431, IEEE, Virtual Conference, 2020.

# **Domain Incremental Learning Settings**

- The task to be learnt by the model does not change but the **input** • data distribution changes
- **Continual learning algorithms** are trained under this setting **for** each sensitive attribute
- An example of the settings for gender attribute •
  - **Task:** Classifying facial expressions ۲
  - Attribute: Gender ۲
  - **Domains:** Male and Female ٠
  - **Splits:** Each split involves samples from one domain ٠
  - Training: Model encounters with one split at a time and ٠ learns incrementally
  - **Evaluation:** Model is evaluated on each split after training ٠

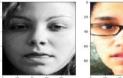
#### 1- Male Split



#### 2- Female Split



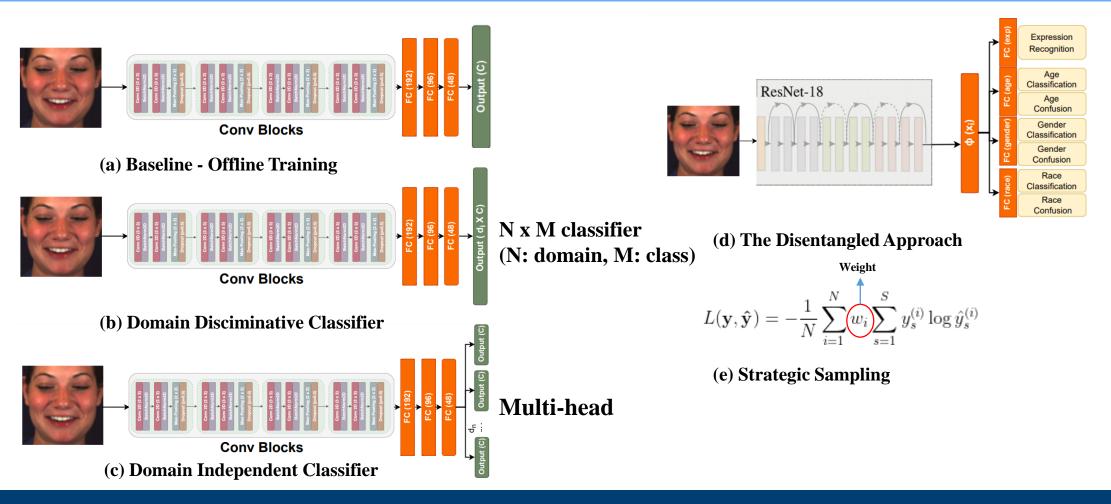
Incremental


Learning
















## **Benchmark – Non CL Based Approaches**





# **Benchmark – CL Based Approaches**

• Adds **quadratic penalty** on the difference between the parameters for the old and new tasks

A single quadratic penalis applied in an **online fashion**.

penalty Shion. Rehearsal

MAS

- MAS enables importance weight estimation in an unsupervised manner
- While training a new task, each mini-batch is constructed by an equal amount of new data and the rehearsal data.



EWC

Adds **importance value** to parameters of the network, high important parameters change less

• Note that we don't use **complex rehearsal algorithms** for fair comparison



### **Fairness Measure**

- We use 'equal opportunity' definition of fairness [1]
- It quantifies the largest gap among scores on different domains
- We use **accuracy** as a scoring metric for models

$$\mathcal{F} = \min(\frac{f(\hat{\mathbf{y}}, \mathbf{y}, s_0, \mathbf{x})}{f(\hat{\mathbf{y}}, \mathbf{y}, d, \mathbf{x})}, ..., \frac{f(\hat{\mathbf{y}}, \mathbf{y}, s_n, \mathbf{x})}{f(\hat{\mathbf{y}}, \mathbf{y}, d, \mathbf{x})},$$

x: input
ŷ: predicted label
f: scoring function

y: ground truth labels: sensitive attributed: dominant attribute

|                 | Black | Asian | White | Latino | Fairness |
|-----------------|-------|-------|-------|--------|----------|
| Baseline        | 0.659 | 0.720 | 0.771 | 0.764  | 0.855    |
| Naive Rehearsal | 0.767 | 0.779 | 0.788 | 0.762  | 0.967    |

**Example:** Accuracy and fairness table for 2 methods evaluated on race attribute

[1] M. Hardt, E. Price, and N. Srebro, "Equality of opportunity insupervised learning," inAdvances in neural information processingsystems, 2016, pp. 3315–3323.

Green denotes the minimum accuracy score Blue denotes the maximum accuracy score Fairness = Green / Blue => largest gap

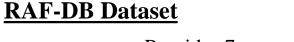


# **Experiment Setup**

- We conducted **2 experiments** with **11 different approaches**:
  - **Experiment 1**: Facial Expression Recognition
  - **Experiment 2**: Action Unit Detection
- With reporting models' fairness performances on:
  - Gender attribute,
  - Race attribute,
- Under two versions
  - With data augmentation (horizontal flipping)
  - Without data augmentation.
- We use the same CNN architecture for all models except for the Disentangled Approach [1]






AU12

AU14

AU15

AU17

AU23



- Provides 7 expression labels:
  - Surprise, Fear, Disgust, Happiness, Sadness, Anger, Neutral
- Provides gender:
  - Male Female
- and **race** information:
  - Caucasian African American Asian

#### BP4D Dataset

AU24

- We use 12 most frequent Action Units (AU)
- Provides gender:
  - Male Female
- and **race** information:
  - Black White Latino Asian



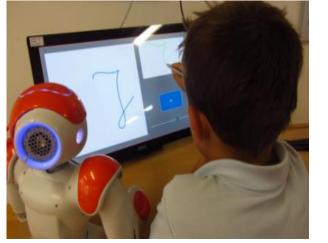
**Experiment 1:** Fairness Scores across Gender and Race for the RAF-DB Dataset. **Bold** values denote best while [bracketed] denote second-best values for each column.

| Method                               | W/O Data       | -Augmentation    | W/ Data-Augmentation |                |  |  |  |
|--------------------------------------|----------------|------------------|----------------------|----------------|--|--|--|
|                                      | Gender         | Race             | Gender               | Race           |  |  |  |
| Baseline<br>Offline                  | 0.834<br>0.944 | 0.943<br>0.925   | 0.816<br>0.954       | 0.937<br>0.974 |  |  |  |
| Non-CL-based Bias Mitigation Methods |                |                  |                      |                |  |  |  |
| DDC [44]                             | 0.968          | 0.985            | 0.961                | 0.976          |  |  |  |
| DIC [44]                             | 0.938          | 0.989            | 0.962                | 0.965          |  |  |  |
| SS [15]                              | 0.955          | 0.961            | 0.954                | 0.975          |  |  |  |
| DA [45]                              | 0.975          | 0.858            | [0.997]              | 0.919          |  |  |  |
|                                      | Continu        | al Learning Metl | hods                 |                |  |  |  |
| EWC [23]                             | 0.972          | 0.987            | 0.983                | 0.990          |  |  |  |
| EWC-Online [39]                      | 0.970          | 0.987            | 0.974                | 0.990          |  |  |  |
| SI [47]                              | 0.990          | 0.996            | 0.999                | 0.996          |  |  |  |
| MAS [2]                              | [0.980]        | [0.990]          | 0.990                | [0.994]        |  |  |  |
| NR [22]                              | 0.928          | 0.974            | 0.923                | 0.974          |  |  |  |



**Experiment 2:** Fairness Scores across Gender and Race for the BP4D Dataset. **Bold** values denote best while [bracketed] denote second-best values for each column.

| W/O Data                                                                                                    | -Augmentation                                                                                                                                                                          | W/ Data-Augmentation                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Gender                                                                                                      | Race                                                                                                                                                                                   | Gender                                                                                                                                                                                                                                                                                                                                | Race                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 0.962<br>0.984                                                                                              | 0.855<br>0.878                                                                                                                                                                         | 0.941<br>[ <i>0.994</i> ]                                                                                                                                                                                                                                                                                                             | 0.858<br>0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Non-CL-based Bias Mitigation Approaches                                                                     |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| [ <i>0.990</i> ]<br>0.979<br>0.977<br><b>0.994</b>                                                          | 0.920<br>0.925<br>0.920<br>[0.954]                                                                                                                                                     | 0.991<br>0.985<br>0.983<br>0.995                                                                                                                                                                                                                                                                                                      | 0.924<br>0.922<br>0.919<br>[0.962]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| DA [45]         0.994         [0.954]         0.995         [0.962]           Continual Learning Approaches |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 0.981<br>0.976<br>0.986<br>0.966                                                                            | 0.949<br>0.937<br>0.946<br>0.920                                                                                                                                                       | 0.992<br>[0.994]<br>0.965<br>0.967                                                                                                                                                                                                                                                                                                    | 0.943<br>0.957<br>0.954<br>0.909<br><b>0.974</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                             | Gender          0.962          0.984          n-CL-based          [0.990]          0.979          0.977          0.994          Continual          0.981          0.976          0.986 | 0.962       0.855         0.984       0.878         n-CL-based Bias Mitigation A         [0.990]       0.920         0.979       0.925         0.977       0.920         0.994       [0.954]         Continual Learning Appro         0.981       0.949         0.976       0.937         0.986       0.946         0.966       0.920 | Gender         Race         Gender           0.962         0.855         0.941           0.984         0.878         [0.994]           n-CL-based Bias Mitigation Approaches           [0.990]         0.920         0.991           0.979         0.925         0.985           0.977         0.920         0.983           0.994         [0.954]         0.995           Continual Learning Approaches         0.981         0.992           0.976         0.937         [0.994]           0.986         0.946         0.965           0.966         0.920         0.967 |  |  |  |  |




### Conclusion

- Proposed the novel usage of continual learning for developing fairer models
- Highlighted how CL can help **mitigate bias**
- Showed that CL methods are able to **balance learning** across different domains
- **Outperformed** non-CL based approaches
- Can be used in:
  - real-word scenarios with **embedding them onto a humanoid robot**
  - long-term social interactions with under-represented population groups
  - investigating how CL-based FER systems respond to users from different demographics.









(a) https://www.scmp.com/lifestyle/health-wellness/article/3024028/how-robot-nurses-could-help-care-worlds-elderly-and (b) https://navigator8972.github.io/navigator8972.github.io/portfolio/portfolio-3-hwhri/

### Acknowledgement





Nikhil Churamani



**Hatice Gunes** 

- N. Churamani is funded by the EPSRC under grant EP/R513180/1(ref.2107412).
- H. Gunes' work is supported by the EPSRC under grant ref. EP/R030782/1.
- The authors also thank Prof Lijun Yin from Binghamton University (USA) for providing access to the BP4D Dataset and the relevant race attributes; and Shan Li, Profs Weihong Deng and Jun Ping Du from Beijing University of Posts and Telecommunications (China) for providing access to RAF-DB.

